

Degradation Of Polymeric Materials For Multi-use And Re-use

Meghna Jayaraman

Jen Koevary PhD (Sarver Heart Center, Department of Biomedical Engineering, University of Arizona)

Arizona Space Grant Symposium

April 14th, 2018

The Problem

Why do we care?

- As we look into long term space travel we can't sustain the current magnitude of waste output
- Routinely discarded waste may in fact be a reusable source
- Potential Solutions:
 - Mandated limits on consumption and consumed materials
 - Limited standards of living
 - Reduced product efficiency
 - Get creative
 - Maximize the efficiency of waste management through the recycling and repurposing of materials
 - Encourages innovation and competition

Biomaterials in Tissue Engineering

- Biomaterials in tissue engineering have a variety of applications from bone to muscle to skin
 - Biodegradable meshes for hernia and cardiac repair
 - Biodegradable scaffolds for bone growth and repair
 - Biodegradable synthetic skin analogues for burn injuries
- It is crucial to characterize the appropriate mechanical parameters of these meshes, to support regeneration without impeding native tissue function
- In cardiac applications, for example, a prolonged degradation period and high mechanical strength could restrict ventricular filling

Objectives

- Develop and characterize a variety of methods to repurpose and customize the mechanical properties of pre-manufactured polymer meshes for multi-purpose use on Earth and in space
- Our work is designed to elucidate these material characteristics of meshes to aid in handling, engraftment, and biodegradation

Methods

- Two polymeric meshes were explored:
 - 1. Polycarbonate and polylactide co-polymer
 - 2. Polyglactin 910
- Three methods of degradation:
 - 1. Hydrolytic degradation (pH 7.4, 37°C)
 - 2. Ethylene oxide chemical degradation
 - 3. Ultraviolet photolytic degradation (254nm, 15mW)
- Tensile testing
 - To extract the stiffness and maximum tensile strength over the course of degradation

Hydrolytic Degradation

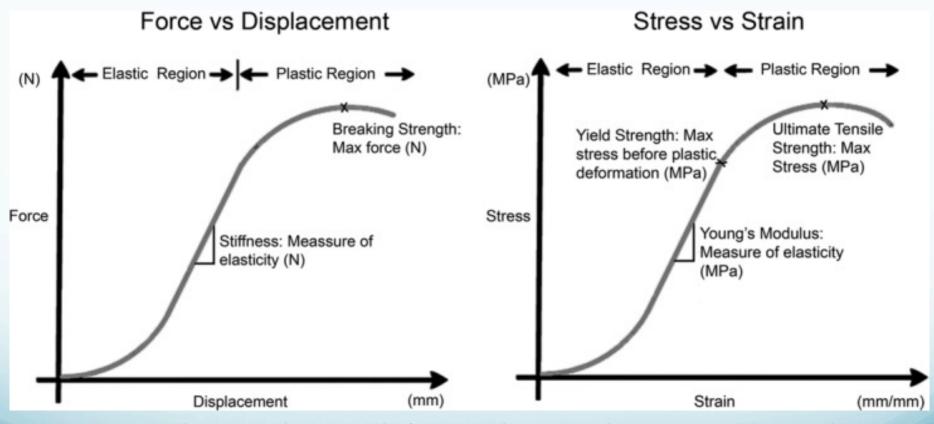
- Simulates in-vitro degradation
 - pH 7.4, 37°C
- Seven day degradation intervals

Photolytic Degradation

- Ultraviolet light degradation
 - 254 nm, 15 mW
- 12 hour exposure periods

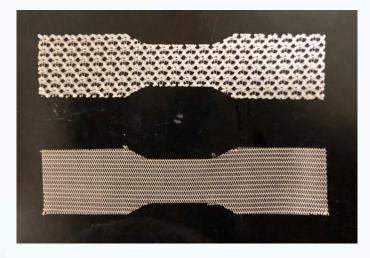
Chemical Degradation

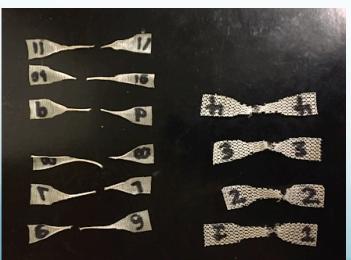
- Ethylene oxide sterilization
 - 12 hour exposures
- Three stages:
 - Pre-conditioning
 - Temperature and humidity controlled to stimulate microorganism growth
 - Sterilizer
 - EtO gas injection
 - De-gasser
 - Remove lingering EtO particles

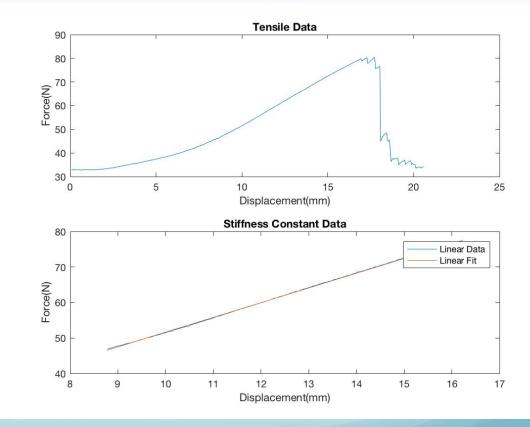


Tensile Testing

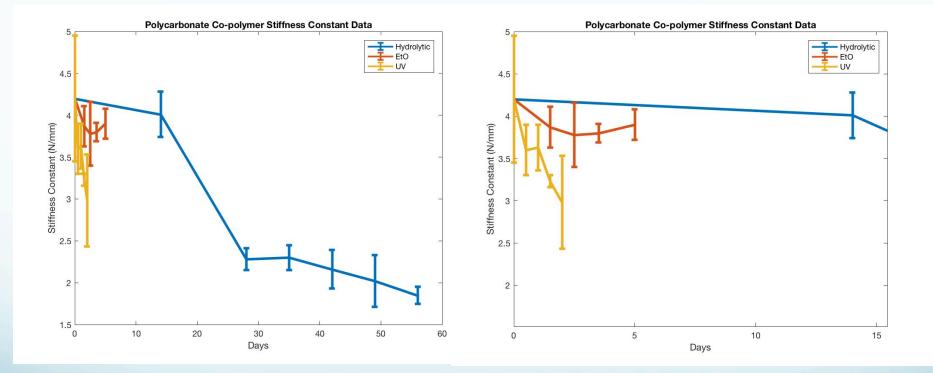
- Young's Modulus (Elastic Modulus)
 - Describes the tendency of an object to deform along an axis when opposing forces are applied along that axis
 - Stress(F/A) / Strain(mm/mm)
 - The more elastic a material, the lower its elastic modulus
- Stiffness
 - Describes the rigidity of an object, the extent to which it resists deformation to an applied force
 - Force(N) / Displacement(mm)
- Maximum Tensile Strength
 - The maximum force(N) a material can withstand while being stretched before breaking

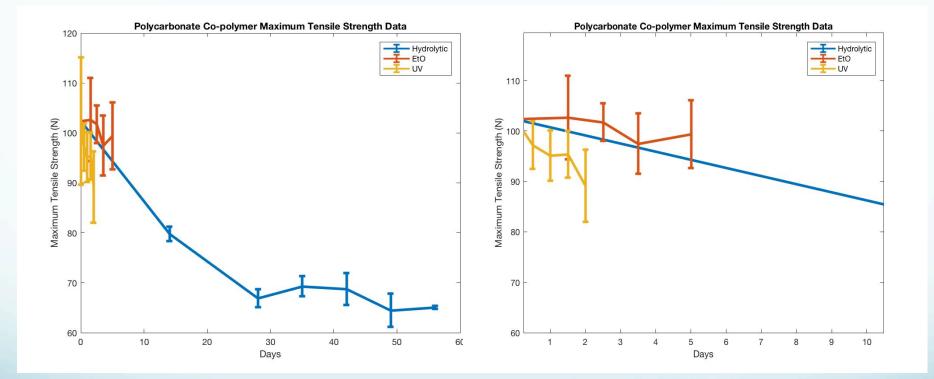


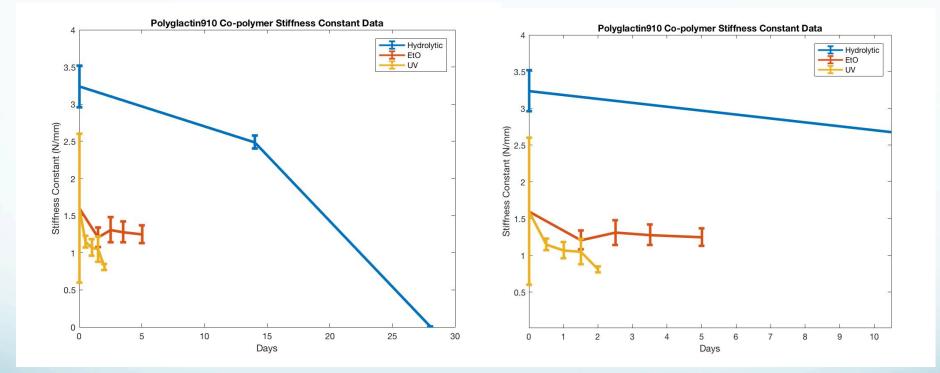

Tensile Testing

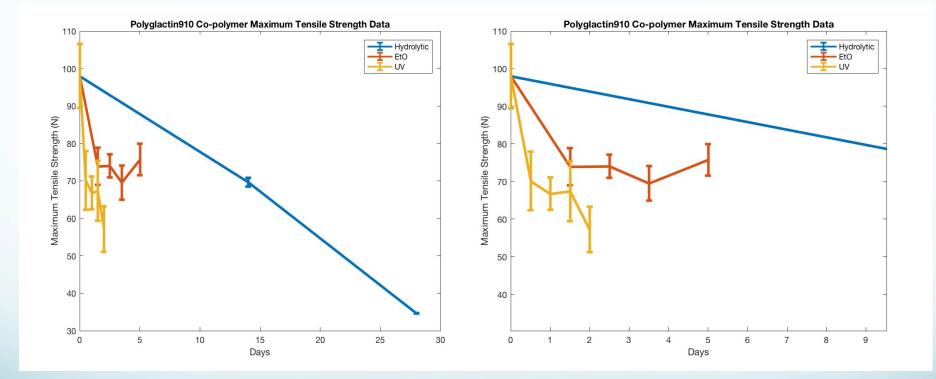


Kueckelhaus, Maximilian & Philip, Justin & Kamel, Rami & A Canseco, Jose & Hackl, Florian & Kiwanuka, Elizabeth & J Kim, Mi & Wilkie, Ryan & Caterson, Edward & Junker, Johan & Eriksson, Elof. (2014). Sustained Release of Amnion-Derived Cellular Cytokine Solution Facilitates Achilles Tendon Healing in Rats. Eplasty. 14. e29.


Tensile Testing




Polycarbonate Co-polymer Stiffness Constant Data


Polycarbonate Co-polymer Maximum Tensile Strength Data

Polyglactin910 Co-polymer Stiffness Constant Data

Polyglactin910 Co-polymer Maximum Tensile Strength Data

Conclusions

- UV degradation is most effective
- EtO degradation is least effective

Future Works:

- Analyze the effects of combined degradation methods
 - Ex: UV and Hydrolytic Degradation of implanted biomaterials in space
- Establish a model of polymer degradation to extrapolate potential material properties given a material and environment

The Big Picture

What does this mean for polymers in space?

- EtO degradation and hydrolytic degradation are feasible in space but must be conducted in controlled environments such as metal encasings to limit simultaneous UV degradation
 - Aluminum can absorb approximately half the radiation it is exposed to
- Light in the range of 200-300 nm is strongly absorbed in the stratosphere by ozone
- Transmission of radiation of wavelengths below 290 nm is negligible below 10 km
- Effects of photolytic degradation will play an important role in long term space travel
 - Negative: difficult to maintain material stability/integrity
 - Positive: for re-purposable materials this means that no extra effort needs to be put into degradation

Acknowledgements

- Michele Tang (University of Arizona)
- Sherry Daugherty (Sarver Heart Center, University of Arizona)
- Jordan Lancaster PhD (Sarver Heart Center, University of Arizona)
- Steven Goldman MD (Sarver Heart Center, University of Arizona)

SARVER HEART CENTER

Thank You

SARVER HEART CENTER

